
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 1165–1176
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Optimal bispectral detection of weak, quadratic nonlinearities in
structural systems
J.M. Nichols a,�, C.C. Olson b

a Naval Research Laboratory, 4555 Overlook Ave. Washington, DC 20375, USA
b National Research Council Postdoctoral Research Associate, Naval Research Laboratory, USA
a r t i c l e i n f o

Article history:

Received 13 January 2009

Received in revised form

22 October 2009

Accepted 26 October 2009
Handling Editor: M.P. Cartmell
spectra’’, where the output of only one degree of freedom is used, and ‘‘mixed spectra’’
Available online 20 November 2009
0X/$ - see front matter Published by Elsevier

016/j.jsv.2009.10.032

responding author. Tel.: +1 202 404 5433; fax

ail address: jonathan.nichols@nrl.navy.mil (J.M
a b s t r a c t

This work derives the expressions for the bispectrum and bicoherence functions for

multi-degree-of-freedom spring–mass systems with quadratic nonlinearities subject to

inputs described by a wide class of random processes. The derivation uses a Volterra

series model for the system response and yields expressions for both ‘‘homogeneous

where the bispectral density contains multiple response time series. This expression is

then used to determine the optimal probability distribution of the input and the optimal

bispectrum to compute for the goal of maximizing the probability of detecting the

nonlinearity.
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1. Introduction

Estimates of the auto-bispectral density obtained from system response data have been used in a number of
applications to detect the presence of quadratic nonlinearities. Since the early work of Brillinger [1] and Hinich [2], the
bispectrum has been recognized as a useful tool for detecting non-normality, often the hallmark of a nonlinear process.
Applications have ranged from understanding natural physical processes [3] to detection of non-normality in radar signals
[4]. Other works have used the estimated bispectrum to analyze structures. Nyffenegger et al. [5] used estimates of the
bispectrum for discriminating among cylinders composed of different materials. Both Worden [6] and Hickey et al. [7] used
estimates of the auto-bispectrum to detect different types of nonlinearity in a multi-degree-of-freedom (MDOF) system
while Messina and Vittal [8] used estimates of the auto-bispectrum to detect nonlinear mode interaction in a power
system [8]. In some cases structural damage will result in the presence of a nonlinearity. Rivola et al. [9] used the
normalized auto-bispectrum to detect cracks in an experimental beam while Zhang et al. [10] focused on detecting gear
faults, also using the auto-bispectrum. Subsequent work by Hillis et al. [11] used the bispectrum to detect cracks in a steel
specimen. Both the auto-bispectrum and auto-trispectrum were used by Teng and Brandon in detecting the deterioration
of jointed structures [12].

Although the bispectral density and bicoherence functions are frequently used as a signal processing tool in random
vibration problems there exists few analytical works, particularly for multiple-degree-of-freedom (MDOF), nonlinear
systems. For the single degree-of-freedom (SDOF) case, several authors have derived an expression for the bispectrum of a
quadratically nonlinear system driven with Gaussian noise [1,13,14]. Additional works have used this expression in the
context of structural dynamics to derive the Type-I and Type-II errors associated with bispectral detection schemes, again
for SDOF, Gaussian driven structures [15]. Recent work by the authors has extended the analysis to include the possibility
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of an MDOF system [16] however this derivation was also limited to Gaussian distributed input. The special form of the
characteristic function for a jointly Gaussian distribution allows one to invoke a valuable theorem in developing the
analytical higher-order spectra. However, it was recently demonstrated that a proper transformation could be used to
derive the bispectrum for a single degree-of-freedom system with a nearly arbitrary input distributions [17].

In this work, we derive a general expression for the auto-bispectral densities associated with a broad class of MDOF
systems driven by any random process that can be described as a memoryless, third-order polynomial transformation of a
Gaussian distributed random process. The formulation that follows is valid for any quadratically nonlinear, MDOF system
forced at a single location. The resulting expressions consider both ‘‘homogeneous spectra’’, where the response of a single
degree of freedom is being analyzed, and ‘‘mixed spectra’’, where the response at multiple points is considered in the
estimate.

Once the expressions are obtained they are compared to estimated bispectral densities and bicoherence functions,
performed using the direct method of estimation. It is shown how varying the location of the nonlinearity, and which of the
bispectra is estimated can influence the detection problem. It is also shown that if the goal is nonlinearity detection using
an uncorrelated (broadband) input sequence, the optimal input probability distribution for interrogating the structure is
Gaussian.

2. Bispectrum and bicoherence for MDOF systems subject to non-Gaussian inputs

The auto-bispectral density function for a stationary system response is defined as the double Fourier transform (FT) of
the third joint lagged cumulant. Denoting the response data from the ith degree-of-freedom as yiðtÞ and the de-meaned
signal as ~yiðtÞ the expression for the bispectral density is

Bykyiyj
ðo1;o2Þ ¼

Z 1
�1

Z 1
�1

E½ ~ykðtÞ ~yiðtþt1Þ ~yjðtþt2Þ�e
�iðo1t1þo2t2Þ dt1 dt2 (1)

Consider yiðtÞ to be the response of a linear structure to a stationary random process xðtÞ. It is easy to show that if
xðtÞ�N ðm;s2Þ i.e. is normally distributed with mean m and variance s2, then Bykyiyj

ðo1;o2Þ ¼ 0 8o1;o2. If Bykyiyj
ðo1;o2Þa0

there are two possibilities. One is that the structure obeys a nonlinear model such that a symmetric input distribution, like
the Gaussian, leads to an asymmetric distribution on the output. The other possibility is that the structure is linear, but that
the input distribution is asymmetric with a non-zero third moment. In the latter case the bispectrum is given by

Bykyiyj
ðo1;o2Þ ¼H1;iðo1ÞH1;jðo2ÞH1;kð�o1 �o2ÞBxxxðo1;o2Þ (2)

where Bxxxðo1;o2Þ is the bispectrum of the input and H1;i is the linear system transfer function relating the input to the
output at the ‘‘i’’th degree-of-freedom. In order to help discriminate between these possibilities the bispectrum may be
normalized by the product of linear transfer functions given in Eq. (2). Noting that the output power spectral density (PSD)
for a linear system is Syiyi

ðoÞ ¼ jH1;ij
2SxxðoÞ, a normalized version of the bispectrum is written as [1]

bykyiyj
ðo1;o2Þ ¼

Bykyiyj
ðo1;o2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Syiyi
ðo1ÞSyjyj

ðo2ÞSykyk
ðo1þo2Þ

q (3)

and is referred to as the bicoherence function. For example, if the input consists of independent, identically distributed (iid)
values chosen from a non-Gaussian distribution, and the structure is linear, the bicoherence will be the constant

bykyiyj
ðo1;o2Þ ¼ E½ykðtÞyiðtÞyjðtÞ�D

1=2
t =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½yiðtÞyiðtÞ�E½yjðtÞyjðtÞ�E½ykðtÞykðtÞ�

q

where Dt is the sampling interval (the reason for the inclusion of D1=2
t is given in the Appendix). A nonlinear structural

response will result in non-constant values of the bicoherence, regardless of the distribution of the input. Thus, a test for
nonlinearity may be realized by simply testing the constancy of the estimated bicoherence function (see e.g. Priestly [18]).

Analytical expressions for both Bykyiyj
ðo1;o2Þ and bykyiyj

ðo1;o2Þ are now derived. In [17] this derivation was first
presented but for single-degree-of-freedom (SDOF) systems only. The first step is to develop an analytical expression for
yiðtÞ capable of capturing second-order nonlinearities. To this end we make use of the Volterra functional series approach
described in detail by Schetzen [19]. This approach is essentially a Taylor series expansion for functions with memory [20].
Like the Taylor series, the Volterra approximation is only appropriate for systems with smooth (differentiable)
nonlinearities and will not converge for arbitrary system parameters. Solutions far from linear (i.e. strongly nonlinear
behavior) cannot be captured using this approach. For detection problems the focus is typically on weak nonlinearities for
which the Volterra model is appropriate.

Using a two-term Volterra series, the signal model becomes

yiðtÞ ¼

Z 1
�1

h1;iðtÞxðt � tÞdtþ
Z 1
�1

Z 1
�1

h2;iðt1; t2Þxðt � t1Þxðt � t2Þdt1 dt2

yiðtÞ ¼

Z 1
�1

h1;iðtÞE½xðt � tÞ�dtþ
Z 1
�1

Z 1
�1

h2;iðt1; t2ÞE½xðt � t1Þxðt � t2Þ�dt1 dt2 (4)
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where h1;iðtÞ;h2;iðt1; t2Þ are the linear and quadratic Volterra kernels, respectively. While more terms could be considered
their contribution to the response is higher order and is not considered here. We could, for example, have added a cubic
term to the model (4) which would better capture the quadratic nonlinearity and would also reflect the influence
of smooth, third-order nonlinearities. The resulting solution for the bispectrum in this case will contain contributions from
h3;iðt1; t2; t3Þ. However, in this work we are focused on the detection of weak, quadratic nonlinearities. Under these
assumptions the additional terms turn out to be orders of magnitude smaller than those containing h2;iðt1; t2Þ. Inclusion of
the higher-order kernels in this case results in a minimal gain in model accuracy but comes at a huge cost analytically as
will become apparent in the following derivation. We should also mention that if the goal is the detection of third-order
nonlinearities the trispectrum is probably a more appropriate tool. For the trispectrum, third-order nonlinearities
contribute to leading order as was recently demonstrated in [21].

Deriving the bispectrum involves substituting the signal model (4) into (1) and simplifying. In the original derivation of
the bispectrum for MDOF systems, the assumption of a Gaussian distributed input was essential as it allowed for a theorem
originally derived by Isserlis [22] to be used in the simplification. Isserlis’s Theorem states

Theorem 2.1 (Isserlis’ Theorem). If Z1;Z2; . . . ;Z2Nþ1 (N¼ 1;2; . . .) are normalized, jointly Gaussian random variables (i.e., for

every i, E½Zi� ¼ 0 and E½Z2
i � ¼ 1), then

E½Z1Z2 � � �Z2N� ¼
XY

E½ZiZj�

and

E½Z1Z2 � � �Z2Nþ1� ¼ 0

where the notation
PQ

means summing over all distinct ways of partitioning Z1;Z2; . . . ;Z2N into pairs (without regard to
order). For example, consider the case of four Gaussian random variables Z1;Z2;Z3;Z4. Application of the above theorem
gives the relation

E½Z1Z2Z3Z4� ¼ E½Z1Z2�E½Z3Z4�þE½Z1Z3�E½Z2Z4�þE½Z1Z4�E½Z2Z3�:

In the derivation one repeatedly encounters expectations of products of powers of the input xðtÞ at various time-delays. For
a jointly Gaussian input all odd-ordered products vanish as a consequence of Theorem 2.1 while all even ordered products
can be broken into sums of auto- and cross-correlation functions. No analogous theorem exists for non-Gaussian joint
distributions of xðtÞ.

In order to circumvent this problem, we consider the input to be a static (memoryless), nonlinear transformation of a
jointly Gaussian distributed random process wðtÞ�N ð0;s2

wÞ by choosing

xðtÞ ¼ a0þa1wðtÞþa2wðtÞ2þa3wðtÞ3: (5)

This particular transformation appears to have been first used by Fleishman [23] in creating non-Gaussian distributions.
Although the transformation is simply a third-order polynomial it can be used to generate a very large variety of
distributions for xðtÞ, depending on how the parameters a0-3 are set. Note that this model does not assume that the input
is spectrally white (iid). The resulting random process can be white or spectrally colored, depending on the process wðtÞ.
This model is limited, however, to random processes with linear temporal correlations. For example, (5) could not be used
to describe an input that is itself the output of a nonlinear system. However, one could conceivably replace (5) with a
second Volterra series model (e.g., Eq. (4)) and carry the derivation forward. However, for this work we restrict ourselves to
a spectrally colored input described by a broad class of probability density functions as specified by (5).

A derivation for the bispectrum subject to the class of non-Gaussian inputs generated by Eq. (5) can now be carried out.
Substituting Eq. (5) into Eq. (4) and then into Eq. (1) yields a very large number of integrals, each involving the products of
an even number of Gaussian distributed random variables wðtÞ (all odd-ordered products are automatically zero by
Theorem 2.1). Some of the products turn out to be quite large, in fact some terms involve the product of 16 wðtÞ’s.
According to Isserlis’s Theorem, the number of autocorrelation terms in the sum is ð2nÞ!=ðn!� 2n

Þ where 2n is the number
of Gaussian variables involved. For 2n¼ 16 this gives 2,027,025 terms, thus implementation of Theorem 2.1 was carried
out using Mathematica software. Additionally, a number of the resulting terms turn out to be higher-order and can be
discarded. Specifically, in the simplification one encounters a number of integrals where the following inequality has been
assumed to hold: Z

H2ðo1 �o;oÞSwwðoÞdo5

Z
SwwðoÞdo (6)

for all choices of o1. For structural systems, one can get a sense of when (6) is expected to hold by considering a specific
H2ðo1;o2Þ kernel. For a single degree-of-freedom, quadratically nonlinear structure (see Eq. (14)), the second-order
Volterra kernel can be shown to have the form

H2ðo1 �o;oÞ ¼ � kNH1ðo1 �oÞH1ðoÞH1ðo1Þ

where H1ðoÞ ¼ 1=ð�mo2þ icoþkLÞ is the familiar linear transfer function. Many structural systems are modeled as lightly
damped and the denominator of H1ðoÞ is dominated by the linear stiffness, kL. The second-order kernel contains a product
of three linear transfer functions, thus the ratio kN=k3

L is expected to be a good predictor of when (6) can be expected to
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hold. We have carried out the integral needed in (6) and have found that if kN=k3
L51, the inequality (6) is indeed satisfied.

We should point out that this is precisely what has already been assumed in modeling the system response i.e., a weakly
nonlinear system.

The end result is the bispectral density function for any weakly quadratic nonlinear system subject to an input that can
be described by the transformation (5)

Bykyiyj
ðo1;o2Þ ¼ Cðo1;o2ÞH1;iðo1ÞH1;jðo2ÞH1;kð�o1 �o2Þ

þ½C2SðaÞ0 þC3SðaÞ1 þC4SðaÞ2 þ8a4
2SðaÞ3 �H1;jðo2ÞH1;kð�o1 �o2ÞH2;ið�o2;o1þo2Þ

þ½C2SðbÞ0 þC3SðbÞ1 þC4SðbÞ2 þ8a4
2SðbÞ3 �H1;iðo1ÞH1;kð�o1 �o2ÞH2;jð�o1;o1þo2Þ

þ½C2SðcÞ0 þC3SðcÞ1 þC4SðcÞ2 þ8a4
2SðcÞ3 �H1;iðo1ÞH1;jðo2ÞH2;kð�o1;�o2Þ

þ2xCðo1;o2Þ½H1;jðo2ÞH1;kð�o1 �o2ÞH2;iðo1;0Þ

þH1;iðo1ÞH1;kð�o1 �o2ÞH2;jðo2;0ÞþH1;iðo1ÞH1;jðo2ÞH2;kð�o1 �o2;0Þ�

þ2x½C2SðaÞ0 þC3SðaÞ1 þC4SðaÞ2 þ8a4
2SðaÞ3 �H1;kð�o1 �o2ÞH2;ið�o2;o1þo2ÞH2;jðo2;0Þ

þ2x½C2SðbÞ0 þC3SðbÞ1 þC4SðbÞ2 þ8a4
2SðbÞ3 �H1;kð�o1 �o2ÞH2;iðo1;0ÞH2;jð�o1;o1þo2Þ

þ2x½C2SðcÞ0 þC3SðcÞ1 þC4SðcÞ2 þ8a4
2SðcÞ3 �H1;iðo1ÞHj;2ðo2;0ÞHk;2ð�o1;�o2Þ

þ2x½C2SðaÞ0 þC3SðaÞ1 þC4SðaÞ2 þ8a4
2SðaÞ3 �H1;jðo2ÞH2;ið�o2;o1þo2ÞH2;kð�o1 �o2;0Þ

þ2x½C2SðbÞ0 þC3SðbÞ1 þC4SðbÞ2 þ8a4
2SðbÞ3 �H1;iðo1ÞH2;jð�o1;o1þo2ÞH2;kð�o1 �o2;0Þ

þ2x½C2SðcÞ0 þC3SðcÞ1 þC4SðcÞ2 þ8a4
2SðcÞ3 �H1;jðo2ÞHi;2ðo1;0ÞHk;2ð�o1;�o2Þ

þ4x2Cðo1;o2Þ½H1;kð�o1 �o2ÞH2;iðo1;0ÞH2;jðo2;0Þ

þH1;jðo2ÞH2;iðo1;0ÞH2;kð�o1 �o2;0ÞþH1;iðo1ÞH2;jðo2;0ÞH2;kð�o1 �o2;0Þ� (7)

where the functions Cðo1;o2Þ;C2;C3;C4, x, and a2 describe the probability distribution of the input and the functions Sða;b;cÞ0;1;2;3

describe the input spectral properties. These functions are given in their entirety in the Appendix.
In order to derive the bicoherence an expression is also required for the power spectrum in terms of the coefficients

a0; a1; a2; a3 and the spectral properties of the input SwwðoÞ. This can be accomplished using the same general procedure as
was used for the bispectrum. The expression for Syiyi

ðo1Þ is also provided in the Appendix. An analytical expression for the
bicoherence function can therefore be obtained by simply dividing the magnitude of Eq. (7) by the product of PSDs
required by Eq. (3).

The final issue that needs to be addressed is how to obtain the linear and nonlinear Volterra kernels. These kernels will
be dependent on the specific system under study. Expressions for H1ðoÞ ¼

R1
�1

h1ðt1Þe
�iot1 dt1 and

H2ðo1;o2Þ ¼
R1
�1

R1
�1

h2ðt1; t2Þe
�iðo1t1þo2t2Þ dt1 dt2, may be obtained via the harmonic probing technique described in

detail in [24,25]. The cited works provide a clear presentation thus the material is not repeated here.
3. Estimation

Estimation of the bispectrum and bicoherence functions has been discussed at length in a number of references (see for
example Nikias and Raghuveer [26] and Huber et al. [27]) and is briefly summarized here. Perhaps the most popular, and
probably computationally most efficient approach, is accomplished in the frequency domain. It can be shown that Eq. (1)
can also be written as

Bykyiyj
ðo1;o2Þ ¼ E½dYiðo1ÞdYjðo2ÞdYkð�o1 �o2Þ� (8)

where dYiðoÞ is the Fourier–Stieltjes representation (Cramér spectral representation) of the signal yiðtÞ, i.e.
~yðtÞ ¼ ð1=2pÞ

R1
�1

eiot dYðoÞ [18]. An estimator can be formed by averaging the discrete Fourier transform of the data
over some number of segments, just as is commonly done for power spectrum estimation. Dividing the observed data
yðnÞ; n¼ 1 � � �N into S overlapping segments of length M gives ys;iðmÞ ¼ yiðmþsM � LÞ; m¼ 0 � � �M � 1, s¼ 0 � � � S� 1. The
variable L denotes the degree of overlap (0rLoM). The data segment is de-meaned (in accordance with the bispectrum
definition), (possibly) windowed, and then Fourier transformed to give Ys;iðfpÞ ¼

P
mwðmÞys;iðmÞe

�i2ppm=M ; p¼ 0; . . . ;M � 1
where wðmÞ is the windowing function. The final estimator for Eq. (1) is then the average

B̂ykyiyj
ðfp; fqÞ ¼

D2
t

SM

XS�1

s ¼ 0

Ys;iðfpÞYs;jðfqÞY
�
s;kðfpþ fqÞ (9)

for discrete frequencies fp; fq. Estimating the bicoherence simply involves dividing by the needed product of estimated
power spectral densities

Ŝyiyi
ðfpÞ ¼

Dt

SM

XS�1

s ¼ 0

Ys;iðfpÞY
�
s;iðfpÞ (10)
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to give

b̂ykyiyj
ðfp; fqÞ ¼

jB̂ykyiyj
ðo1;o2Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ŝyiyi
ðo1ÞŜyjyj

ðo2ÞŜykyk
ðo1þo2Þ

q (11)

Both bispectrum and bicoherence are complex normally distributed [1,27] with variance

s2
e ¼ k

M2Dt

N
Syiyi
ðo1ÞSyjyj

ðo2ÞSykyk
ðo1þo2Þ (12)

and

s2
e ¼ k

M2Dt

N
(13)

respectively. The pre-factor k accounts for the possibility of overlapping segments (L40) and windowing and is discussed
at length in Huber et al. [27].
4. Example system

For this work we consider the three degree-of-freedom, spring–mass–damper system governed by the equations

½M� €yðtÞþ½C� _yðtÞþ½KL�yðtÞþgð _y ; yÞ ¼ xðtÞ (14)

where

½M� ¼

m1 0 0

0 m2 0

0 0 m3

2
64

3
75; ½C� ¼

c1þc2 �c2 0

�c2 c2þc3 �c3

0 �c3 c3

2
64

3
75; ½K� ¼

k1þk2 �k2 0

�k2 k2þk3 �k3

0 �k3 k3

2
64

3
75

are constant coefficient mass, damping and stiffness matrices, respectively. The nonlinear function gð�Þ provides quadratic
coupling between masses. Here we consider both a quadratically nonlinear damping and restoring force between masses.
For example, if the nonlinearity is located between masses 1 and 2 we have

gð _y ; yÞ ¼

�kNðy2ðtÞ � y1ðtÞÞ
2

kNðy2ðtÞ � y1ðtÞÞ
2

0

8><
>:

9>=
>;þ

�cNð _y2ðtÞ � _y1ðtÞÞ
2

cNð _y2ðtÞ � _y1ðtÞÞ
2

0

8><
>:

9>=
>;

where kN ; cN are the nonlinear stiffness and damping coefficients, respectively.
Consider the system defined by Eq. (14) with m1 ¼m2 ¼m3 ¼ 1:0 kg, k1 ¼ k2 ¼ k3 ¼ 2000 N=m, c1 ¼ c2 ¼ c3 ¼ 3:0 N � s=m.

The linear parameters will be fixed to these values for the remainder of this work. First, consider a restoring nonlinearity
kN ¼ 105 N=m2 located between masses 1 and 2. Fig. 1 shows both the theoretical and estimated bispectrum (B̂ €y2 €y2 €y1

ðf1; f2Þ,
and B̂ €y1 €y2 €y2

ðf1; f2Þ) associated with the acceleration response of this nonlinear system subject to Gaussian excitation
(a0 ¼ a2 ¼ a3 ¼ 0, a1 ¼ 1;sw ¼ 1) applied at the third mass. In this example we have used time-series from different points
on the structure in order to illustrate the very different bispectra that can result. For the estimation, time-series of length
N¼ 218 were generated by numerically integrating Eq. (14). The sampling interval was chosen to be Dt ¼ 0:01 s while the
estimation parameters were chosen to be M¼ 1024, L¼ 512, and wðmÞ was chosen based on a Hanning window. As a
second example, consider the input to be governed by a highly non-Gaussian distribution (but with the same nonlinearity).
Fig. 2 shows the distribution along with the predicted and estimated bispectrum. The same estimation parameters were
used as for the previous example. The solution given by Eq. (7) serves as a good approximation for the bispectrum for a
very large number of input distributions and works for any combination of time-series collected from the structure.

The solution can also be used to develop an expression for the analytical bicoherence function. This section concludes
with a comparison between theory and estimate for the bicoherence function associated with a nonlinear system driven
with an input conforming to the w2 distribution (a0 ¼ a1 ¼ a3 ¼ 0, a2 ¼ 1). Results of this comparison are shown in Fig. 3.
For this example both quadratic damping and stiffness terms were placed between masses 1 and 2 with values cN ¼

75 N � s2=m2 and kN ¼ 105 N=m2. Had the system been linear, theory predicts that the bicoherence would have been
perfectly flat across the entire f1; f2 plane with the value jb €yk €yi €yj

ðf1; f2Þj ¼ 0:283 due to the highly skewed nature of the input
distribution. The nonlinearity, however, gives rise to various peaks, located along the combination resonances for this
system, rising above this constant value. As was discussed previously, the estimator associated with the bicoherence has a
much higher variance. For this reason the estimate was made with M¼ 512 point segment, sacrificing bias for variance.
The estimate is still clearly more noisy than for the bispectrum yet is also clearly capturing the features predicted by the
theory. We now turn our attention to a potential use of Eq. (7).
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Fig. 1. (a) Theoretical and (b) estimated bispectrum magnitude based on multivariate acceleration response, jB €y2 €y2 €y 1
ðf1; f2Þj. (c) Theoretical and (d)

estimated bispectrum magnitude jB̂ €y1 €y2 €y 2
ðf1; f2Þj. The forcing was a Gaussian distributed random process, obtained by setting a0 ¼ a2 ¼ a3 ¼ 0 and a1 ¼ 1.

The power spectral density of the forcing was taken to be 0.01 N2=Hz.

Fig. 2. (a) Non-Gaussian input distribution, obtained by setting a0 ¼ � 0:453; a1 ¼ 0:018; a2 ¼ 0:453; a3 ¼ 0:195, so ¼ 1 in Eq. (5). (b) The theoretical and

(c) the estimated output accelerance bispectrum jB €y1 €y 2 €y3
ðf1 ; f2Þj associated with this input applied at mass 3. A quadratic nonlinearity kN ¼ 105 N=m2 was

placed between the first and second masses.

J.M. Nichols, C.C. Olson / Journal of Sound and Vibration 329 (2010) 1165–11761170
5. Optimal bispectral detection

This section covers two of the basic issues associated with designing a bispectral nonlinearity detection scheme. First,
we define the detection statistic to be used and show how this choice leads to a well-defined criteria for optimality in the
detector. Next, we explore optimizing the detection scheme as a function of which bicoherence function to estimate, where
to excite the structure, and which probability distribution to use in constructing the input signal.
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Fig. 3. (a) The theoretical and (b) estimated output accelerance bicoherence magnitude jb €y1 €y1 €y 2
ðf1; f2Þj associated with the input applied at mass 3. The

input distribution was w2 (a0 ¼ a1 ¼ a3 ¼ 0, a2 ¼ 1;sw ¼ 1). Quadratic nonlinearities kN ¼ 104 N=m2 and cN ¼ 75 N s2=m2 were placed between the first and

second masses.
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5.1. Detection statistic

The first question to be answered is what to use as the detection statistic? Previous work by the authors has considered
focusing on the detection probabilities of the estimated bispectrum peaks [15]. However, for MDOF systems there will be a
large number of peaks making this detector a good deal more complicated. Additionally, the possibility of non-Gaussian
inputs suggests a bicoherence-based test statistic rather than one based on the bispectrum. Following the work of Garth
and Bresler [28,29], Richardson and Hodgkiss [3], Hinich and Wilson [4] we make use of the detection statistic

S ¼ 2

s2
e

X
pq

jb̂
r

kijðfp; fqÞj
2 (15)

where the sum is taken over all D¼M2=16 positive frequency bins in the estimated bicoherence function that satisfy
p;qrM=4. This constraint ensures that the sum frequency is below the Nyquist frequency i.e. pþqrM=2. It was
demonstrated in [28] that this test statistic was a sufficient statistic for the generalized likelihood ratio test (GLRT). The
shorthand notation b̂

r

kijðfp; fqÞ has been adopted in place of b̂ €yk €yi €yj
ðfp; fqÞ as all results that follow are obtained using the

acceleration output of Eq. (14). The superscript ‘‘r’’ will be used to denote the forcing location i.e. which degree of freedom
is subject to xðtÞ.

As was mentioned earlier, the bicoherence estimates in each frequency bin are complex Gaussian distributed with
common variance s2

e thus the statistic S will follow a non-central chi-squared distribution with 2D degrees of freedom
(each frequency bin contributes a real and imaginary part, hence the factor of 2). For large D, however, the non-central
chi-squared distribution is well-approximated by a Gaussian distribution with mean and variance

m¼ 2DþL

and

s2 ¼ 2ð2Dþ2LÞ

where L¼ ð2=s2
e Þ
P

p;qjb
r
kijðfp; fqÞj

2 is the non-centrality parameter.
The nonlinearity detection problem is to discriminate between the hypotheses

H0 : S�N ðmL;s2
L Þ

H1 : S�N ðmN ;s2
NÞ (16)

where mL;sL and mN ;sN are the linear and nonlinear mean and variance, respectively. The value for L is known analytically
via Eqs. (7) and (A.4) for any combination of signals i; j; k and input locations r. The value for L is also given as a function of
the input distribution via the parameter vector a. We are therefore in a position to find both the optimal bicoherence to
compute and the optimal input distribution for nonlinearity detection.

For this detection problem, we chose the Neyman–Pearson criterion for optimality, that is to minimize the Type-II error
(maximize probability of detection) for a given Type-I error (probability of false alarm). For the problem stated in (16),
assuming similar values for the variance, this may be accomplished by maximizing the deflection coefficient [30]

d2 ¼
jmN � mLj

2

s2
N

(17)

(even if the assumption of similar variance values is not made the results of the following optimizations were not
changed). In what follows the goal is to maximize d w.r.t. various parameters of interest in this detection problem.
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5.2. Which bicoherence to compute?

The goal of this section is to determine the optimal (in the sense described in the previous section) bicoherence to

estimate. For example, if the nonlinearity is located between masses 1 and 2 should we base Eq. (15) on b̂
1

123 or b̂
3

211?

Specifically, this optimization finds

max
i;j;k;r

d

For this optimization we considered the input xðtÞ to be Gaussian, iid with a constant power spectral density of
Sww ¼ 0:01 N2=Hz. For this particular choice of forcing br

kijðfp; fqÞ ¼ 0 under the linear hypothesis, thus maximizing d strictly
involves finding the largest value of mN . Fortunately for this problem we can exhaustively search the possibilities and find
the test statistic that maximizes Eq. (17). There are three possible locations for both excitation and response giving a total
of 34

¼ 81 possible test statistics to estimate for a given nonlinearity location. First we consider the case where a quadratic
stiffness nonlinearity, kN ¼ 105 N=m2, is placed between masses 1 and 2. Fig. 4(a) plots the key component of mN (large mN

equals large d) for all 81 possible bicoherence functions. A few of these are labeled in the figure and clearly show that some
are more advantageous to use than others for detection purposes. It can be seen that the best bicoherence functions favor
forcing at mass 3 and using the response at mass 1 as the last argument in the estimate

In order to test these predictions the following numerical experiment was performed. Ten separate realizations of
Eq. (14), each consisting of N¼ 32;768 observations, were obtained from the system (14) using a Runge–Kutta numerical
integration scheme. For each realization the test statistic S was estimated using the procedure outlined in Section 3.
The parameters used were M¼ 256, L¼ 128 and a Hanning window was applied for smoothing. Using these parameters
the adjustment factor in Eq. (13) becomes k¼ 0:273. Fig. 4(b) shows the estimated receiver operator characteristic (ROC)
curves associated with a few different choices of bicoherence function used in forming the test statistics. The ROC curve
simply displays probability of detection vs. probability of false alarm associated with varying the detection threshold in a
detection problem [31]. Large values of br

kij result in larger values mN which give rise to better probabilities of detection for
a given probability of false alarm. These results clearly indicate that choice of signals used in computing the bispectrum
and the choice of excitation point are of paramount importance. The ROC performance is exactly in line with that
predicted. Using the test statistic based on b1

221, for example, gives very poor detection performance.
Next, we consider changing the location of the nonlinearity to lie between masses 2 and 3 and repeat the above analysis

with results shown in Fig. 5. Again, test statistics based on the predicted optimal choice of br
kij clearly yield the

best detection performance. Regardless of where the damage is located one can obtain drastically different detection
performance depending on which bicoherence function is used in computing S.

Additionally, these results give a straightforward way to locate the nonlinearity. An input can be applied at both masses
1 and 3 and time-series recorded from each. We can then estimate b1

113 and b3
311. If b1

113bb3
311, the nonlinearity is between

masses 2 and 3 while if b3
311bb1

113, the nonlinearity is between masses 1 and 2.

5.3. What probability distribution to use for the input?

We also consider in the optimization the problem of determining the best input probability density function.
Specifically, for a fixed input power, we seek the parameter vector a � ða0; a1; a2; a3Þ that minimizes our Type-I and Type-II
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Fig. 4. (a) All 81 possible values of br
kij under H1 when the nonlinearity is located between masses 1 and 2 and (b) the ROC curves corresponding to

different choices of test statistic S based on the associated bicoherence estimates.
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Fig. 5. (a) All 81 possible values of br
kij under H1 with the nonlinearity located between masses 2 and 3 and (b) the ROC curves corresponding to different

choices of test statistic S based on the associated bicoherence estimates.

Fig. 6. Several different probability distributions for the input xðtÞ along with the ROC curves associated with detecting a quadratic stiffness nonlinearity

of kN ¼ 30;000 N=m2. The Gaussian distribution was determined theoretically to be the optimal i.i.d. input probability distribution for detecting the

nonlinearity. This is clearly seen to be the case in the estimated ROC curves.
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error in making a detection. This optimization problem can also be written in terms of the deflection coefficient as

max
a1 ;a2 ;a3

d

An exhaustive search is not possible in this case; for this reason differential evolution was used to search the parameter
space. It should also be pointed out that only zero-mean distributions were considered in this work, i.e. a0 ¼ � a2s2

w. This
was done purely for practical reasons as the equipment used in vibration testing is often displacement limited. A large non-
zero mean may help detection but may not be feasible experimentally. The optimization was also limited to iid inputs, that
is to say there is no spectral coloring on the input signal. The goal here was to focus strictly on the form of the input
probability density and not on where the signal energy should be concentrated.

For this optimization, the nonlinearity was located between masses 1 and 2 such that the bicoherence feature b3
221 gives

the best detection performance and was taken to be the detection statistic. The results of the optimization are not entirely
surprising. It turns out that for the class of input distributions considered, a Gaussian distribution is optimal. In general,
symmetric distributions performed well. This is due to the fact that for a symmetric input distribution the bicoherence is
near zero if there is no nonlinearity. Because the variance of the test statistic increases with L, any input distribution that
minimizes the value of the non-centrality parameter while maximizing the difference between linear and nonlinear non-
centrality parameters is preferred. Highly asymmetric distributions performed poorly because even in the linear case they
result in high values of L. Fig. 6 shows several different input distributions along with the generated ROC curves. The ROC
curves were based on estimates of b3

221, obtained from 20 independent realizations of Eq. (14). As predicted by theory, the
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best performing ROC curve is clearly associated with a Gaussian input. Thus, we conclude that for detecting a quadratic
nonlinearity in a structural system using iid. inputs a Gaussian distributed input is optimal.

6. Conclusions

A closed-form expression for both the bispectral density and bicoherence functions associated with a quadratically
nonlinear, multi-degree-of-freedom system response was derived. The main assumption underlying the derivation is that
the system be weakly nonlinear. This assumption is necessary both for the Volterra series model to hold, and for the
simplification of the full bispectrum expression. Under this assumption, estimates of both the bispectrum and bicoherence
functions were shown to be in close agreement with theory. These expressions were then used to derive both the optimal
bicoherence to compute (including where to drive the structure) and the optimal probability distribution of the input for
detecting the presence of a nonlinearity. The results indicate that sub-optimal choices of these parameters can significantly
degrade detection performance. We conclude that for this example system, the forcing should be applied away from the
nonlinearity and the signal in the last argument of the estimated bicoherence be taken close to the nonlinearity. As was
mentioned, the very specific force/response combinations that lead to large values of the test statistic provide a convenient
way to locate the nonlinearity. Additionally we recommend that for a bicoherence-based detector, a Gaussian distributed
input results in the best possible detection performance over a wide range of zero-mean, broad-band (i.i.d.) inputs. It may
be the case that deterministic inputs (e.g. sinusoid) or highly band-limited random inputs can produce still better detection
performance. Future work, using the derived expression, will determine if additional detection gains can be realized by
concentrating the input signal energy in certain frequency ranges (e.g. near resonance).
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Appendix A. Terms in bispectrum characterizing input probability distribution and power spectrum

The main analytical result of the paper, Eq. (7), is given in terms of coefficients describing both the probability
distribution and spectral properties of the input. The input distribution properties are captured by the terms

Cðo1;o2Þ ¼ 2a2
1a2S0þ6a1a2a3ðS1þ2s2

wS0Þþ8a3
2
~Sþ18a2a2

3ð2S2þs2
wS1þs4

wS0Þ

C2 ¼ 2a4
1þ24s2

wa3
1a3þ108s4

wa2
1a2

3þ216s6
wa1a3

3þ162s8
wa4

3

C3 ¼ 4a2
1a2

2þ24s2
wa1a2

2a3þ36s4
wa2

2a2
3

C4 ¼ 12a2
1a2

3þ72s2
wa1a3

3þ108s4
wa4

3

x ¼ E½xðtÞ� ¼ a0þs2
wa2 (A.1)

while the input spectral properties are governed by

SðaÞ0 ¼ Swwðo1þo2ÞSwwðo2Þ

SðbÞ0 ¼ Swwðo1þo2ÞSwwðo1Þ

SðcÞ0 ¼ Swwðo1ÞSwwðo2Þ

2pSðaÞ1 ¼ Swwðo2Þ

Z
Swwðo1þo2þo3ÞSwwðo3Þdo3þSwwðo1þo2Þ

Z
Swwðo2þo3ÞSwwðo3Þdo3

2pSðbÞ1 ¼ Swwðo1Þ

Z
Swwðo1þo2þo3ÞSwwðo3Þdo3þSwwðo1þo2Þ

Z
Swwðo1þo3ÞSwwðo3Þdo3

2pSðcÞ1 ¼ Swwðo1Þ

Z
Swwðo2þo3ÞSwwðo3Þdo3þSwwðo2Þ

Z
Swwðo1þo3ÞSwwðo3Þdo3

4p2SðaÞ2 ¼ Swwðo1þo2Þ

ZZ
Swwðo2þo3þo4ÞSwwðo3ÞSwwðo4Þdo3 do4

þSwwðo2Þ

ZZ
Swwðo1þo2þo3þo4ÞSwwðo3ÞSwwðo4Þdo3 do4
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4p2SðbÞ2 ¼ Swwðo1þo2Þ

ZZ
Swwðo1þo3þo4ÞSwwðo3ÞSwwðo4Þdo3 do4

þSwwðo1Þ

ZZ
Swwðo1þo2þo3þo4ÞSwwðo3ÞSwwðo4Þdo3 do4

4p2SðcÞ2 ¼ Swwðo1Þ

ZZ
Swwðo2þo3þo4ÞSwwðo3ÞSwwðo4Þdo3 do4

þSwwðo2Þ

ZZ
Swwðo1þo3þo4ÞSwwðo3ÞSwwðo4Þdo3 do4

4p2SðaÞ3 ¼

ZZ
Swwðo1þo2þo4ÞSwwðo2þo3ÞSwwðo3ÞSwwðo4Þdo3 do4

4p2SðbÞ3 ¼

ZZ
Swwðo1þo2þo4ÞSwwðo1þo3ÞSwwðo3ÞSwwðo4Þdo3 do4

4p2SðcÞ3 ¼

ZZ
Swwðo1þo3ÞSwwðo2þo4ÞSwwðo3ÞSwwðo4Þdo3 do4

2p ~S ¼
Z

Swwðo1þo3ÞSwwðo2þo3ÞSwwðo3Þdo3 (A.2)

and S0 ¼ SðaÞ0 þSðbÞ0 þSðcÞ0 , S1 ¼ SðaÞ1 þSðbÞ1 þSðcÞ1 , S2 ¼ SðaÞ2 þSðbÞ2 þSðcÞ2 .
It should be pointed out that each of the integrals in Eq. (A.2) extends over the real number line i.e. �1� � � þ1. This

causes problems, however, when dealing with a random process that is both continuous and independently, identically
distributed (iid). The reason for this, quite simply, is that a truly iid random process possesses a constant power spectral
density i.e. Sww ¼ const � P. By Parsevals relationship, the integral of the PSD gives the variance; however, this implies that
an iid process has infinite variance. It also implies that the integrals in (A.2) are infinite. This leads to an apparent
contradiction, that spectral analysis is not possible for a truly continuous iid random process. In fact, a sufficient condition
for the polyspectra to exist is that X

t1

� � �
X
tn�1

jCðt1; . . . ; tn�1Þjo1

where Cð�Þ is the stationary joint cumulant of the random process under study [18]. For n¼ 2 and 3 cumulants are equal to
moments thus the power spectrum and bispectrum must possess limited second- and third-order correlations,
respectively, to exist [18, pp. 213, 872]. In dealing with sampled data, however, the above criteria is automatically
satisfied as the limits on the integrals are dictated by the sampling interval, Dt . For example, assuming an iid random
process (constant PSD, P) the last equality in Eq. (A.2) becomes

2p ~S ¼ P3

Z p=Dt

�p=Dt

do

~S ¼ P3=Dt (A.3)

Thus, for an iid random process the integrals given by Eqs. (A.2) simplify considerably.
The sampling interval is often omitted from discussions of higher-order spectral analysis and the units of the

bispectrum are simply left as ½y�3. However, Eq. (1) is a density function with units ½y�3=Hz2. This becomes important when
comparing observations to theory where one is typically working with spectral density functions. This is also the reason for
the D1=2

t found in the expression for the bicoherence discussed earlier. Treating both numerator and denominator of Eq. (3)
as spectral density functions leads to the units Hz�1=2 for the bicoherence. The bicoherence is clearly not bounded on the
interval 0-1 and depends very much on the sampling interval used.

In order to derive the expression for the bicoherence, an expression for the power spectral density function is needed.
Using the two-term Volterra model, Eq. (4), the power spectrum can be written as

Syiyi
ðo1Þ ¼ ½ða

2
1þ6s2

wa1a3þ9s4
wa2

3ÞS
ðaÞ
4 þ2a2

2SðbÞ4 þ6a2
3SðcÞ4 �

� fH1;iðo1ÞH1;ið�o1Þþ2xðH2;ið0;�o1ÞH1;iðo1ÞþH2;ið0;o1ÞH1;ið�o1ÞÞg (A.4)

where

SðaÞ4 ¼ Swwðo1Þ

2pSðbÞ4 ¼

Z
Swwðo1þo2ÞSwwðo2Þdo2

4p2SðcÞ4 ¼

ZZ
Swwðo1þo2þo3ÞSwwðo2ÞSwwðo3Þdo2 do3 (A.5)
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Combining Eqs. (7), (A.1), (A.2) and (A.4), (A.5) provides an analytical expression for the bicoherence function associated
with the response of a multiple degree-of-freedom structure subject to colored, non-Gaussian excitation of the type
defined by Eq. (5).
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